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Global Address Space
and Remote Memory Access

collection of address spaces
of processesin a parallel job
global address: (address, PID)

associated communication paradigm
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Remote Memory Access

Examples: Cray T3E, Fujitsu VPP5000 PO 0 Pl
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Point-to-point Message Passing




GAS Modelsin PModels Project

www. pnodel s. org

e Global Address Space Is aconcept shared among
several models in the PModels project

» Language Based Programming Models
Co-Array Fortran (Rice, U. Minnesota)

UPC (LBNL, Berkeley)
Titanium (Berkeley)

e Library Based Programming Models
MPI-2 1-sided (Argonne)
SHMEM (Ames Lab)
Global Arrays (PNNL)




CoArray Fortran

Relatively simple extensions (comparing to HPF) to Fortran 90
SPMD process images

* number of images fixed during execution

* Images operate asynchronously

Both private and shared data
» alows programmer manage data locality explicitly
real a(20,20) private: a 20x20 array in each image
real a(20,20) [*] shared: a 20x20 array in each image
Simple one-sided shared memory communication
X(:,j:j+2) =a(r,:) [p:p+2] copy 3 rowsfrom p:p+2into 3 ocal columns
Flexible synchronization
sync_team(team [,wait])
team avector of processids to synchronize with
wait avector of processesto wait for (a subset of team)
Pointers and (possibly asymmetric) dynamic allocation

Parallel 1/0 (Panda/HDF effortsat UIUC & NCSA)




UPC

e Shared array elements are spread across the threads
shared int X[ THREADS] one element per thread
shared int y[3][THREADS] 3 elements per thread
shared int zZ[3* THREADS] 3 elements per thread, cyclic
Assume THREADS=4, elements with affinity to processor O are marked

X [ This is really
a 2D array

blocked

| cyclic

* Pointers may point to shared or private variables
shared int * sp; pointer to an integer residing in the shared memory

e Locks

SONSISLET IC

e Strict and relaxed memao




SHMEM

Introduced on the Cray T3D Symmetric Object

* put, get, atomic swap, collectives

Memory addressability
* Ssymmetric objects
* stack, heap alocation on the T3D PO
* Cray memory allocation routine shmalloc

Characteristics

* ordered intheorigina version onthe T3D
out-of-order on the T3E due to adaptive routing
* simple progressrules
simpler than MPI-2 1-sided, less synchronization

Portable implementation from Ames- GPSHMEM

v ¥
shmem put(a,b,n,0)




Global Arrays

shared memory mode! in
context of distributed arrays

dual view of data
e gShared
e distributed

datalocality control

used in multiple areas

e popular in parallel computational
chemistry codes




Global Array Model of Computations
(motivated by NUMA hardware)

Shared Object
D

communication

compute/update

Shared Object

1-sded
communication




PModels Run-Time System Activities

e Communication support critical
* Need performance, scalability, and portability
* Low latency RMA communication
e.g., put,get, locks, atomic read-modify-write

nonblocking API for overlapping communication with data movement
for latency hiding

both small message and bulk operations important
* Collective operations
barriers, reduce, broadcast

* Run-time efforts represented by

« GASNet (LBNL)
« ARMCI (PNNL, OSU)




GA Snhet

Compiler-specific runtime system

LBNL system for UPC
Aims for awide portability

2-Level architecture to ease implementation GASNet Extended AR
Core AP

— Based heavily on Active Messages

— Implemented directly on each platform

— Most basic required primitives, as narrow and general as possible
Extended AP

— Wider interface that includes more complicated operations

— Reference implementation of extended API in terms of the core API

— Implementors can choose to directly implement any subset for
performance - leverage hardware support for higher-level operations




ARMCI

Aggregate Remote Memory Copy Interface

Portable and low-level APl used by
= GPSHMEM, CoArray Fortran, Global Arrays

Broad set of functionality
= put, get, accumulate (also with noncontiguous interfaces)

(0xf5670,P0)

(0xf32674,P5)

= atomic read-modify-write, mutexes and locks
= collective operations

Characteristics

= simple progressrules, operations ordered w.r.t. target (ease of use)
= does not assume any particular implementation model (e.g., AM)

= focus on block data rather than single word transfers

High performance delivered on a wide range of platforms

=  Multi-protocol and multi-method implementations




Integrated Run-Time System

e Goadl to build run-time system used accross PModels project
e generality and flexibility
 portability and performance

e Combine best features of ARMCI and GasNet, for example

AM-MPI developed by GasNet should work with ARMCI thus
providing the Active Message API (polling only)

define extended set of memcopy interfaces in UPC able to use
highly tuned ARMCI strided and vector interfaces

add nonblocking APIs defined by GasNet to ARMCI




Portability Challenge

accum locks RMW ncontig nblock ordering “regular”
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Achieving Portability

functionality
matches vendor

X iImplementation

thin wrapper
e
native vendor protocols -




Client-Server Approach

e Used to implement missing functionality @

e conversion of memory requirements
e.g. dynamic memory registration

e get ontop of put

e Architecture
e Extrathread on each SMP node used as server

* Blocked when no requests available USer process

Polling available as a configuration option if (client)

extra CPU power available
extra thread

* Interrupt/demand driven operation (server)
usually adds extra cost

* AM handler like approach but no full AM API




Scalability and Performance of RMA

* Inprinciple RMA model ishighly scalable
e given good h/w support e.g., Cray T3E
* otherwise might be limited by a s/'w implementation
conversion of h/w, OS, and programming model requirements

* Depend on the underlying network capabilities

reliability (user or h/w/firmware?)

APIs and protocols - native RMA or other paradigm? @—[l]é

MemOory access requirements O(P) buffers under GM
registering might be required

flow control & buffer managment (e.g., VIA vs GM) \\ e

 Wewant the network h/w handle as much as possible '\

* Design of complex NIC can be costly! i1
* Traditionally IBM SP designs did not favor low latency RMA




Relation To Blue Gene/L

e Interested in porting GAS models to the machine
e Advantages of GAS Models

* complementary approach to MPI
no embedded synchronization
better suited for irregular applications and data access patterns

scalable implementation could be ssimpler
— N0 message queues management, matching sends with receives
— movement of data between two memory locations

* shared memory style accessto data

e Challenges
* dealing with h/w faults - none of the GAS models supports it

* underlying network protocols should be RMA aware for best
performance

building RMA on top of message passing compromises performance




Final Thoughts

GAS Models could offer an alternative to MPI on BG/L

e we don't know which model would work best

implementation might be alimiting factor

e good run-time support critical for performance and scalability

e opportunities for using second processor
Need to engage the IBM team to derive an efficient implementation of
the PModels run time

* network protocols and OS issues

* performance characteristics and resource utilization
Some research problems are difficult and span multiple s'w layerse.g.,
fault tolerance

e programming model vs application vs OS support

* asaminimum run-time system must recognize faults and provide data up to
programming model




